
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Sygma Bridge Handlers

Veridise Inc.
September 13, 2024

▶ Prepared For:

ChainSafe
https://buildwithsygma.com/

▶ Prepared By:

Ajinkya Rajput
Evgeniy Shishkin
Jon Stephens

▶ Contact Us:

contact@veridise.com

▶ Version History:

Sep. 13, 2024 V1
Sep. 09, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://buildwithsygma.com/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Security Assessment Goals and Scope 5
3.1 Security Assessment Goals . 5
3.2 Security Assessment Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 7

4 Vulnerability Report 9
4.1 Detailed Description of Issues . 10

4.1.1 V-SBH-VUL-001: Leftover DMR tokens are not properly cleaned up . . . 10
4.1.2 V-SBH-VUL-002: Resources can be overwritten by mistake 12
4.1.3 V-SBH-VUL-003: Insufficient input arguments check 13
4.1.4 V-SBH-VUL-004: Missing address zero-checks 14
4.1.5 V-SBH-VUL-005: Missing events on state updates 15
4.1.6 V-SBH-VUL-006: convertToInternalBalance return value inconsistency . 16
4.1.7 V-SBH-VUL-007: Inconsistency in bytes encoding may lead to errors . . 17
4.1.8 V-SBH-VUL-008: Typos and incorrect comments 18

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

Executive Summary 1
From Aug. 21, 2024 to Aug. 28, 2024, ChainSafe engaged Veridise to conduct a security
assessment of several modules of their Sygma Bridge Handlers, together with smart contracts
of the Sprinter product.

Veridise conducted the security assessment over 12 person-days, with 2 security analysts
reviewing the project over 6 days on commit 204f1378. The security assessment methodology
involved a tool-assisted analysis of the program source code performed by Veridise security
analysts as well as thorough code review.

Project Summary. This security assessment addressed two loosely related products that are
briefly described here.

Sprinter Escrow Contracts. These contracts are a part of a system called Sprinter. The system is
designed to help users perform actions with their tokens that are potentially distributed across
multiple chains. For instance, a user might have several valuable tokens (such as stablecoins)
spread across different chains, and they wish to purchase an NFT on some chain they don’t
even have a wallet for. In such scenarios, Sprinter will assist in aggregating all the funds on the
target chain and executing a required purchase transaction on a destination smart contract. The
Sprinter Escrow Contracts are responsible for accumulating funds and executing the expected
call when enough funds get accumulated.

Sygma Bridge Handlers. The Sygma Bridge is a software that allows users to conveniently transfer
their on-chain assets, such as ERC20-compatible tokens and NFTs, between different blockchains.
Handlers are modules that are responsible for handling specific types of assets.

▶ The ERC20Handler module is a handler responsible for swaps of ERC20-compatible
tokens.

▶ The DefaultMessageReceiver module is a component of ERC20Handler that allows users
to perform complex, programmable actions on their swapped tokens in the destination
chain. These actions include swaps, ERC20 transfers, and native Eth transfers, all within a
single transaction.

Please note that the integration of handlers into the Sygma Bridge was not within the scope of
this security assessment.

Code Assessment. The ChainSafe developers provided the source code of all the smart
contracts for the code review. The source code appears to be original. It contains some low-level
documentation in a form of the README file and documentation comments on functions and
storage variables. A more general, high-level documentation of the project was also available
on the project’s website. However, there was no specific documentation that explained the
higher-level purpose of the smart contracts.

The source code contains a test suite, which implements several integration tests exercising the
most critical execution paths.

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

2 1 Executive Summary

Summary of Issues Detected. The security assessment uncovered 8 issues. The most severe
issue among those is V-SBH-VUL-001, which, in some rare circumstances, may allow an attacker
to steal some of the user tokens. The security analysts also identified 3 low-severity issues, 3
warnings, and 1 informational finding . The developers of Sygma Bridge Handlers have fixed
most of the findings.

Recommendations. After conducting the security assessment of the protocol, the security
analysts had a few suggestions to improve the Sygma Bridge Handlers:

1. Provide a high-level description of each handler that would clarify its purpose and the
most important aspects of its behavior in the form of comments.

2. Provide tests for the DefaultMessageReceiver contract.
3. The protocol accepts arguments as byte arrays in several places, however the exact format

is not always specified. It is suggested to clearly state the expected format of those byte
arrays, and to mention a potential issue of using abi.encode function due to its alignment
behavior in this setting.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Sygma Bridge Handlers 204f1378 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Aug. 21–Aug. 28, 2024 Manual & Tools 2 12 person-days

Table 2.3: Vulnerability Summary.

Name Number Acknowledged Fixed
Critical-Severity Issues 0 0 0
High-Severity Issues 0 0 0
Medium-Severity Issues 1 1 1
Low-Severity Issues 3 3 2
Warning-Severity Issues 3 3 3
Informational-Severity Issues 1 1 1
TOTAL 8 8 7

Table 2.4: Category Breakdown.

Name Number
Data Validation 3
Maintainability 3
Logic Error 1
Missing/Incorrect Events 1

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

Security Assessment Goals and Scope 3
3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of several ChainSafe smart
contracts. During the security assessment, the security analysts aimed to answer questions such
as:

▶ Are there any Solidity-specific code defects that could affect the security of the system?
▶ Is the any divergence between the described business logic and the program code

implementation?
▶ Is the testing coverage sufficient?

Specifically to Gopher Escrow Contracts, the security analysts aimed to answer questions
such as:

▶ Is the Gopher Factory Contract susceptible to a front-running attack, when attacker
could deploy a target Gopher Escrow contract before the factory does this?

▶ Is the request hashing implementation susceptible to any kind of manipulations?
▶ Is it possible to execute a user’s request several times, by replaying an already sent request?
▶ Are there any reentrancy possibilities?

Specifically to Sygma Bridge Handler contracts, the security analysts aimed to answer questions
such as:

▶ Does there exist a context in which the execution of a swap request may result in an asset
loss for the ERC20Handler and DefaultMessageReceiver?

▶ Does the input data get properly validated before being processed?
▶ Are all the required safeguards, such as zero address protection, in place?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis & testing tools. In
particular, the security assessment was conducted with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, security analysts leveraged
the custom smart contract analysis tool Vanguard, as well as the open-source tool Slither.
These tools are designed to find instances of common smart contract vulnerabilities, such
as reentrancy, uninitialized variables, unused functions, etc.

Scope. The scope of this security assessment consists of two parts.

The first part is called Gopher Escrow Contracts‗ of the Sprinter product, consisting of two
files:
‗ They were renamed into Sprinter Escrow Contracts recently

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

6 3 Security Assessment Goals and Scope

▶ GopherEscrow.sol

▶ GopherEscrowFactory.sol

The second part is Sygma Bridge Handlers consisting of the following files:

▶ ERC20Handler.sol

▶ DefaultMessageReceiver.sol

▶ ERCHandlerHelpers.sol

▶ ExcessivelySafeCall.sol

▶ ERC20Safe.sol

Please note that these modules constitute an important part of the Sygma Bridge, however, the
question of proper integration of those modules into the Bridge was not part of this security
assessment scope.

Methodology. Veridise security analysts reviewed the reports of previous audits for Sygma Bridge
Handlers, inspected the provided tests, and read the Sygma Bridge Handlers documentation.
They then began a code review of the code assisted by static analyzers. During the security
assessment, the Veridise security analysts asked both technical and contextual questions about
the system on Telegram, and the developers provided prompt and helpful responses.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

3.3 Classification of Vulnerabilities 7

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

The likelihood of a vulnerability is evaluated according to the Table 3.2.

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

Vulnerability Report 4
In this section, the vulnerabilities found during the security assessment are presented. For each
issue found, the type of the issue, its severity, location in the code base, and its current status
(i.e., acknowledged, fixed, etc.) is specified. Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.
ID Description Severity Status
V-SBH-VUL-001 Leftover DMR tokens are not properly . . . Medium Fixed
V-SBH-VUL-002 Resources can be overwritten by mistake Low Acknowledged
V-SBH-VUL-003 Insufficient input arguments check Low Fixed
V-SBH-VUL-004 Missing address zero-checks Low Fixed
V-SBH-VUL-005 Missing events on state updates Warning Fixed
V-SBH-VUL-006 convertToInternalBalance return value . . . Warning Fixed
V-SBH-VUL-007 Inconsistency in bytes encoding may lead . . . Warning Fixed
V-SBH-VUL-008 Typos and incorrect comments Info Fixed

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-SBH-VUL-001: Leftover DMR tokens are not properly cleaned up

Severity Medium Commit 204f137
Type Logic Error Status Fixed

File(s) DefaultMessageReceiver.sol

Location(s) performActions
Confirmed Fix At 37d6af8

The ERC20Handler contract is responsible for facilitating the swap operation of ERC20 tokens
between different blockchains. In addition to the standard functionality of a swap, this contract
allows users to perform a complex series of token management operations as part of the same
transaction. To execute this series of operations, the user provides an array of actions, each
specifying the type of operation to be performed next.

All such operations are carried out using the DefaultMessageReceiver contract, which acts as an
intermediary between the destination user’s wallet and the Bridge. Note that the same contract
is used for all transactions, regardless of the user performing the swap on the Sygma Bridge.

Since anyone can operate on this contract, it is essential that after the last user has completed
their swap operation and has used the DefaultMessageReceiver function, no funds should
remain in the balance of this contract. Otherwise, a malicious user could take what is left by
performing the corresponding actions.

The developers of DefaultMessageReceiver have implemented countermeasures to protect
against this: both the remaining native ETH funds and the swapped ERC-20 tokens are sent to
the addresses provided by the user.

However, there is another type of funds that also need to be managed carefully: approved
ERC20 tokens that are sent to the DefaultMessageReceiver when external calls are made from
within the handler. These tokens are not returned to the sender and remain on the balance of
the DefaultMessageReceiver, so they can potentially be taken out by a malicious user. This
functionality is not present.

1 function performActions(

2 address tokenSent,

3 address payable receiver,

4 uint256 startingNativeBalance,

5 Action[] memory actions

6) external {

7 if (msg.sender != address(this))

8 revert InsufficientPermission();

9

10 uint256 numActions = actions.length;

11 for (uint256 i = 0; i < numActions; i++) {

12 // ...skipped...

13 approveERC20(IERC20(actions[i].tokenSend),

14 actions[i].approveTo,

15 type(uint256).max);

16 // ...skipped

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

4.1 Detailed Description of Issues 11

17 }

18 if (address(this).balance > startingNativeBalance) {

19 transferNativeBalance(receiver);

20 }

21 transferBalance(tokenSent, receiver);

22 returnLeftOvers(actions, receiver);

23 }

Snippet 4.1: Snippet from performActions()

This contract intends to maintains an invariant that before and after all actions are performed,
all balances of the DefaultMessageReceiver contract are zero. To do that, the contract returns
any leftover tokens to reciever address as shown below. However, the tokenSend tokens are not
returned.

1 function returnLeftOvers(Action[] memory actions, address payable receiver)

2 internal {

3 for (uint256 i; i < actions.length; i++) {

4 transferBalance(actions[i].tokenReceive, receiver);

5 approveERC20(IERC20(actions[i].tokenSend), actions[i].approveTo, 0);

6 }

7 }

Snippet 4.2: Snippet from returnLeftOvers()

Impact Since the balance of the DefaultMessageReceiver contract for tokenSend tokens may be
used only partially, the contract will keep accumulating tokens, and since it approves max
balance in its approve call, an attacker can steal all of these leftover tokens.

Recommendation Return tokenSend tokens in returnLeftOvers()

Developer Response The developers have implemented a fix for this issue.

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

12 4 Vulnerability Report

4.1.2 V-SBH-VUL-002: Resources can be overwritten by mistake

Severity Low Commit 204f137
Type Data Validation Status Acknowledged

File(s) ERC20Handler.sol

Location(s) setResource
Confirmed Fix At N/A

Sygma Bridge uses a unified system of token identifiers across different blockchain networks,
known as resources. Each network has its own unique token address for each identifier, which
is assigned when the resource is initialized. To the best of our understanding, those identifiers
are not meant to be changed after being initialized, or at least such a change would be a rare
occurrence. There is no mechanism in place to prevent setting an already-initialized resource in
the ERC20Handler .

Impact If, by mistake, the identifier is reinitialized with the wrong token address, it may at
worst lead to an incorrect swap operation.

Recommendation If a change to an already initialized resource is expected, it is recommended
to create a separate function that can be called in those rare cases. Otherwise, it is recommended
to implement a check that prevents the resource from being reinitialized.

Developer Response The developers acknowledged the issue, but decide to rely on the
operational procedures to mitigate it.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

4.1 Detailed Description of Issues 13

4.1.3 V-SBH-VUL-003: Insufficient input arguments check

Severity Low Commit 204f137
Type Data Validation Status Fixed

File(s) DefaultMessageHandler.sol

Location(s) performActions()
Confirmed Fix At a94faf9

The following places in the code were identified to have insufficient input data validation.

▶ In the DefaultMessageReceiver contract, the performActions function does not check the
receiver address not be equal to address(0) or the DefaultMessageReceiver address.

▶ In the ERC20Handler contract, the function executeProposals allows the destination
address length to be of an arbitrary length. However, for the EVM chains, this has to
always be equal to 20 bytes.

Impact It is highly unlikely that providing arguments that would violate the above-mentioned
constraints will occur. However, if this does happen, it can lead to two possible outcomes:
tokens being locked, in the case of sending them to address(0), or being stolen, in the case
where the address of the DefaultMessageReceiver is specified as the recipient.

Recommendation It is recommended to implement the aforementioned checks.

Developer Response The developers implemented a fix for the ERC20Handler part of the issue,
while the behavior of the DefaultMessageReceiver was left intact to follow the original intent.

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-SBH-VUL-004: Missing address zero-checks

Severity Low Commit 204f137
Type Data Validation Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At a94faf9

Description The following functions take addresses as arguments, but do not validate that
the addresses are non-zero:

▶ ERC20Handler.sol

• setResource(): contractAddress parameter is not validated
• withdraw(): recipient address parameter encoded in the byte string is not validated

Impact Using a zero address by mistake is very likely to cause undesirable consequences,
such as loss of tokens or system malfunction.

Recommendation It is recommended to implement zero address checks.

Developer Response The developers have implemented a fix for this issue.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

4.1 Detailed Description of Issues 15

4.1.5 V-SBH-VUL-005: Missing events on state updates

Severity Warning Commit 204f137
Type Missing/Incorrect Events Status Fixed

File(s) GopherEscrow.sol , DefaultMessageHandler.sol

Location(s) See description
Confirmed Fix At 324cff6

Upon a state update, it is strongly recommended that developers emit an event to indicate that a
change was made. Doing so allows both external users and protocol administrators to monitor
the protocol for a variety of reasons, including for potentially suspicious activity. It is therefore
critical for significant changes to the protocol to be accompanied with events to enable this
monitoring.

It was identified that the following functions do not emit events:

1. In the GopherEscrow contract, the function execute does not emit an event.
2. In the DefaultMessageReceiver contract, the function performActions does not emit an

event on a successful action execution, despite the event named ActionPerformed being
defined in the contract.

Impact Insufficient event production hinders monitoring of the system both from the perspec-
tive of operators and DApps.

Recommendation It is recommended to implement the aforementioned events.

Developer Response The developers have implemented a fix for this issue.

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

16 4 Vulnerability Report

4.1.6 V-SBH-VUL-006: convertToInternalBalance return value inconsistency

Severity Warning Commit 204f137
Type Maintainability Status Fixed

File(s) ERCHandlerHelpers.sol

Location(s) convertToInternalBalance()
Confirmed Fix At a94faf9

The ERC20Handler contract uses two utility functions convertToInternalBalance() and
convertToExternalBalance() to normalize the decimals of the users balances to
defaultDecimals .

While convertToExternalBalance() returns an uint256 value and is the final balance amount
after normalizing, convertToInternalBalance() returns a byte string.

Moreover, if the token already has defaultDecimals, convertToInternalBalance() returns an
empty string, otherwise it returns new balance in byte string encoded format.

1 function convertToInternalBalance(address tokenAddress, uint256 amount) internal view

returns(bytes memory) {

2 Decimals memory decimals = _tokenContractAddressToTokenProperties[tokenAddress].

decimals;

3 uint256 convertedBalance;

4 if (!decimals.isSet) {

5 return "";

6 } else if (decimals.externalDecimals >= defaultDecimals) {

7 convertedBalance = amount / (10 ** (decimals.externalDecimals -

defaultDecimals));

8 } else {

9 convertedBalance = amount * (10 ** (defaultDecimals - decimals.

externalDecimals));

10 }

11

12 return abi.encodePacked(convertedBalance);

13 }

Snippet 4.3: Snippet from convertToInternalBalance()

Impact This could cause confusion for users, as the returned value depends on which code
path is executed.

Recommendation To avoid possible confusion, it is recommended to make the function always
return the same value on all execution paths. This value should be the adjusted balance.

Developer Response The developers have implemented a fix for this issue.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

4.1 Detailed Description of Issues 17

4.1.7 V-SBH-VUL-007: Inconsistency in bytes encoding may lead to errors

Severity Warning Commit 204f137
Type Maintainability Status Fixed

File(s) ERC20Handler.sol

Location(s) setResource , executeProposals
Confirmed Fix At a94faf9

The ERC20Handler contract uses a bytes array to pass parameter values to functions in several
parts of the code. If the input parameters are encoded using the abi.encode() function, the
functions might not work correctly because of different assumptions about the encoding
scheme. Since there is no specification of the encoding scheme anywhere, developers might
easily overlook it and assume that the encoding follows the standard abi.encode() method,
which is usually the case for bytes arguments.

Consider the following example:

1 function setResource(bytes32 resourceID, address contractAddress, bytes calldata args

)

2 external onlyBridge {

3 _setResource(resourceID, contractAddress);

4 if (args.length > 0) {

5 uint8 externalTokenDecimals = uint8(bytes1(args));

6 _setDecimals(contractAddress, externalTokenDecimals);

7 }

8 }

Snippet 4.4: Snippet from ERC20Handler contract

If the supplied value for the externalTokenDecimals get encoded using the standard
abi.encode(decimals, (uint8)) , the above code will return 0 for decimals value, since
abi.encode() does alignment of the data to the 32 bytes boundary.

Another instance of this issue was identified in the executeProposals function. This function
expects a bytes-like data argument containing all the necessary information encoded according
to a specific layout specified in comments. However, it can be easily overlooked that the
expected format differs from what the abi.encode() function provides.

Impact If developers assume that the data argument is expected to be encoded using the
standard abi.encode() scheme, this could potentially lead to asset loss.

Recommendation If there is a valid reason for using a custom-made encoding scheme instead
of the standard abi.encode() function, it is important to clearly state this in comments and
other relevant documentation, to rule out any possible confusion.

Developer Response The developers have implemented a fix for this issue.

Veridise Audit Report: Sygma Bridge Handlers © 2024 Veridise Inc.

18 4 Vulnerability Report

4.1.8 V-SBH-VUL-008: Typos and incorrect comments

Severity Info Commit 204f137
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At a94faf9

Description In the following locations, security analysts identified minor typos and potentially
misleading comments:

▶ ERC20HandlerHelpers.sol

• convertToInternalBalance(): The comment describing the function is either
incorrect or inaccurate.

▶ ERC20Handler.sol

• deposit(): The comment describing return value is inaccurate. The return data is
empty only if the decimals value is not set for a token.

Impact Misleading comments can hinder understanding of the codebase by developers and
potential users.

Recommendation It is recommended to fix the comments.

Developer Response The developers have implemented a fix for this issue.

© 2024 Veridise Inc. Veridise Audit Report: Sygma Bridge Handlers

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-SBH-VUL-001: Leftover DMR tokens are not properly cleaned up
	V-SBH-VUL-002: Resources can be overwritten by mistake
	V-SBH-VUL-003: Insufficient input arguments check
	V-SBH-VUL-004: Missing address zero-checks
	V-SBH-VUL-005: Missing events on state updates
	V-SBH-VUL-006: convertToInternalBalance return value inconsistency
	V-SBH-VUL-007: Inconsistency in bytes encoding may lead to errors
	V-SBH-VUL-008: Typos and incorrect comments

